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Universal Gravitation

CHAPTER OUTLINE
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Gravitation
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ANSWERS TO QUESTIONS

*Q13.1 The force is proportional to the product of the masses 
and inversely proportional to the square of the separation 
distance, so we compute m

1
m

2 
�r  2 for each case: 

(a) 2 ⋅ 3�12 = 6 (b) 18 (c) 18�4 = 4.5 (d) 4.5 (e) 16�4 = 4. 
The ranking is then b > a > c = d > e.

*Q13.2 Answer (d). The International Space Station orbits just 
above the atmosphere, only a few hundred kilometers 
above the ground. This distance is small compared to 
the radius of the Earth, so the gravitational force on the 
astronaut is only slightly less than on the ground. We 
think of it as having a very different effect than it does 
on the ground, just because the normal force on the 
orbiting astronaut is zero.

*Q13.3 Answer (b). Switching off gravity would let the atmosphere evaporate away, but switching off the 
atmosphere has no effect on the planet’s gravitational fi eld. 

Q13.4 To a good fi rst approximation, your bathroom scale reading is unaffected because you, the Earth, 
and the scale are all in free fall in the Sun’s gravitational fi eld, in orbit around the Sun. To a 
precise second approximation, you weigh slightly less at noon and at midnight than you do at 
sunrise or sunset. The Sun’s gravitational fi eld is a little weaker at the center of the Earth than at 
the surface subsolar point, and a little weaker still on the far side of the planet. When the Sun is 
high in your sky, its gravity pulls up on you a little more strongly than on the Earth as a whole. At 
midnight the Sun pulls down on you a little less strongly than it does on the Earth below you. So 
you can have another doughnut with lunch, and your bedsprings will still last a little longer.

*Q13.5 Having twice the mass would make the surface gravitational fi eld two times larger. But the 
inverse square law says that having twice the radius would make the surface acceleration due to 
gravitation four times smaller. Altogether, g at the surface of B becomes (2 m�s2)(2)�4 = 1 m�s2, 
answer (e).

*Q13.6 (i) 42 = 16 times smaller: Answer (i), according to the inverse square law.

 (ii)  mv2�r = GMm�r2 predicts that v is proportional to (1�r)1�2, so it becomes (1�4)1�2 = 1�2 as 
large: Answer (f ). 

 (iii) (43)1�2 = 8 times larger: Answer (b), according to Kepler’s third law.
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*Q13.7 Answer (b). The Earth is farthest from the sun around July 4 every year, when it is summer in 
the northern hemisphere and winter in the southern hemisphere. As described by Kepler’s second 
law, this is when the planet is moving slowest in its orbit. Thus it takes more time for the planet to 
plod around the 180° span containing the minimum-speed point.

Q13.8 Air resistance causes a decrease in the energy of the satellite-Earth system. This reduces the 
diameter of the orbit, bringing the satellite closer to the surface of the Earth. A satellite in a smaller 
orbit, however, must travel faster. Thus, the effect of air resistance is to speed up the satellite!

*Q13.9 Answer (c). Ten terms are needed in the potential energy: 

U U U U U U U U U U U= + + + + + + + + +12 13 14 15 23 24 25 34 35 45

Q13.10 The escape speed from the Earth is 11.2 km�s and that from the Moon is 2.3 km�s, smaller by a 
factor of 5. The energy required—and fuel—would be proportional to v2, or 25 times more fuel is 
required to leave the Earth versus leaving the Moon.

*Q13.11 The gravitational potential energy of the Earth-Sun system is negative and twice as large in mag-
nitude as the kinetic energy of the Earth relative to the Sun. Then the total energy is negative and 
equal in absolute value to the kinetic energy. The ranking is a > b = c.

Q13.12 For a satellite in orbit, one focus of an elliptical orbit, or the center of a circular orbit, must be 
located at the center of the Earth. If the satellite is over the northern hemisphere for half of its 
orbit, it must be over the southern hemisphere for the other half. We could share with Easter 
Island a satellite that would look straight down on Arizona each morning and vertically down on 
Easter Island each evening. 

Q13.13 Every point q on the sphere that 
does not lie along the axis connect-
ing the center of the sphere and the 
particle will have companion point 
q′ for which the components of the 
gravitational force perpendicular to 
the axis will cancel. Point q′ can be 
found by rotating the sphere through 
180° about the axis. The forces will 
not necessarily cancel if the mass is 
not uniformly distributed, unless the 
center of mass of the non-uniform 
sphere still lies along the axis.

Q13.14 Speed is maximum at closest approach. Speed is minimum at farthest distance. These two points, 
perihelion and aphelion respectively, are 180° apart, at opposite ends of the major axis of the 
orbit.

Q13.15 Set the universal description of the gravitational force, F
GM m

Rg
X

X

= 2
, equal to the local 

 description, F mag = gravitational, where M X and RX are the mass and radius of planet X,

 respectively, and m is the mass of a “test particle.” Divide both sides by m.

Q13.16 The gravitational force of the Earth on an extra particle at its center must be zero, not infi nite as 
one interpretation of Equation 13.1 would suggest. All the bits of matter that make up the Earth 
will pull in different outward directions on the extra particle.

Q13.17 Cavendish determined G. Then from g
GM

R
= 2

, one may determine the mass of the Earth.
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 Universal Gravitation 339

*Q13.18 The gravitational force is conservative. An encounter with a stationary mass cannot permanently 
speed up a spacecraft. But Jupiter is moving. A spacecraft fl ying across its orbit just behind 
the planet will gain kinetic energy as the planet’s gravity does net positive work on it. This is a 
 collision because the spacecraft and planet exert forces on each other while they are isolated from 
outside forces. It is an elastic collision. The planet loses kinetic energy as the spacecraft gains it.

Section 13.1 Newton’s Law of Universal Gravitation

P13.1 For two 70-kg persons, modeled as spheres,

F
Gm m

rg = =
× ⋅( )( )−

1 2
2

116 67 10 70 70. N m kg kg kg2 2 (( )
( )

−

2
102

7

m
N~

P13.2 F m g
Gm m

r
= =1

1 2
2

 g
Gm

r
= =

× ⋅( ) × ×−
2

2

11 4 36 67 10 4 00 10 10. .N m kg kg2 2 (( )
( ) = × −

100
2 67 102

7

m
m s2.

P13.3 (a)  At the midpoint between the two objects, the forces exerted by the 200-kg and 500-kg 
objects are oppositely directed, and from

F
Gm m

rg = 1 2
2

  we have F
G∑ =

( ) −( )
( ) =

50 0 500 200

0 200
2 502

.

.
.

kg kg kg

m
×× −10 5 N  toward the 500-kg object.

 (b)  At a point between the two objects at a distance d from the 500-kg objects, the net force on 
the 50.0-kg object will be zero when

G

d

G50 0 200

0 400

50 0 50
2

.

.

.kg kg

m

kg( )( )
−( ) =

( ) 00
2

kg( )
d

   To solve, cross-multiply to clear of fractions and take the square root of both sides. The 

  result is d = 0 245. m from the 500-kg object toward thee smaller object  .

P13.4 m m1 2 5 00+ = . kg   m m2 15 00= −. kg

F G
m m

r

m
= ⇒ × = × ⋅( )− −1 2

2
8 111 00 10 6 67 10. .N N m kg2 2 11 1

2

5 00

0 200

.

.

kg

m

−( )
( )

m

1 1
25 00

1 0
.

.
kg( ) − =m m

00 10 0 040 0

6 67 10
6

8

11

×( )( )
× ⋅

=
−

−

N m

N m kg

2

2 2

.

.
.000 kg2

 Thus,

m m1
2

15 00 6 00 0− ( ) + =. .kg kg

 or

m m1 13 00 2 00 0−( ) −( ) =. .kg kg

 giving m m1 23 00 2 00= =. .kg, so kg . The answer m1 2 00= . kg and m2 3 00= . kg is 

 physically equivalent.

SOLUTIONS TO PROBLEMS
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P13.5 The force exerted on the 4.00-kg mass by the 2.00-kg mass is 
directed upward and given by

 
�
F j24

4 2

24
2

116 67 10
4 00

=

= × ⋅( )−

G
m m

r
ˆ

.
.

N m kg
k2 2 gg kg

m

N

( )( )
( )

= × −

2 00

3 00

5 93 10

2

11

.

.
ˆ

. ˆ

j

j

 The force exerted on the 4.00-kg mass by the 6.00-kg mass is 
directed to the left

 �
F i64

4 6

64
2

116 67 10
4

= −( ) = − × ⋅( )−G
m m

r
ˆ .

.
N m kg2 2 000 6 00

4 00

10 0 10

2

11

kg kg

m

N

( )( )
( )

= − × −

.

.
ˆ

. ˆ

i

i

 Therefore, the resultant force on the 4.00-kg mass is 
� � �
F F F i j4 24 64

1110 0 5 93 10= + = − +( ) × −. ˆ . ˆ N .

*P13.6 (a)  The Sun-Earth distance is 1 496 1011. × m and the Earth-Moon distance is 3 84 108. × m, so 
the distance from the Sun to the Moon during a solar eclipse is

1 496 10 3 84 10 1 492 1011 8 11. . .× − × = ×m m m

  The mass of the Sun, Earth, and Moon are  MS = ×1 99 1030. kg

 ME = ×5 98 1024. kg

 and MM = ×7 36 1022. kg

  We have F
Gm m

rSM = =
×( ) ×( ) ×−

1 2
2

11 30 26 67 10 1 99 10 7 36 10. . . 22

11 2
20

1 492 10
4 39 10

( )
×( ) = ×

.
. N

 (b) FEM =
× ⋅( ) ×( ) ×−6 67 10 5 98 10 7 36 1011 24 2. . .N m kg2 2 22

8 2
20

3 84 10
1 99 10

( )
×( ) = ×

.
. N

 (c) FSE =
× ⋅( ) ×( ) ×−6 67 10 1 99 10 5 98 1011 30 2. . .N m kg2 2 44

11 2
22

1 496 10
3 55 10

( )
×( ) = ×

.
. N

 
   (d)  The force exerted by the Sun on the Moon is much stronger than the force of the Earth on 

the Moon. In a sense, the Moon orbits the Sun more than it orbits the Earth. The Moon’s 
path is  everywhere concave toward the Sun. Only by subtracting out the solar orbital 
motion of the Earth-Moon system do we see the Moon orbiting the center of mass of this 
system.

P13.7 F
GMm

r
= = × ⋅( ) ( ) ×−

2
116 67 10

1 50 15 0 1
.

. .
N m kg

kg2 2 00

4 50 10
7 41 10

3

2 2
10

−

−
−( )

×( ) = ×
kg

m
N

.
.

FIG. P13.5
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 Universal Gravitation 341

P13.8 Let θ represent the angle each cable makes with the vertical, L the cable length, 
x the distance each ball scrunches in, and d = 1 m the original distance between 
them. Then r d x= − 2  is the separation of the balls. We have

 Fy∑ = 0:  T mgcosθ − = 0

 Fx∑ = 0:  T
Gmm

r
sinθ − =2 0

 Then

tanθ = Gmm

r mg2
  

x

L x

Gm

g d x2 2 22−
=

−( )   x d x
Gm

g
L x−( ) = −2 2 2 2

 The factor Gm

g
 is numerically small. There are two possibilities: either x is small or else 

d x− 2  is small.

 Possibility one: We can ignore x in comparison to d and L, obtaining

 x 1
6 67 10 100

9 8
2

11

m
N m kg kg

m s

2 2

2( ) =
× ⋅( )( )−.

.(( ) 45 m   x = × −3 06 10 8. m

 The separation distance is r = − ×( ) = −−1 2 3 06 10 1 000 61 38m m m nm. . . . This equilibrium is 
stable.

 Possibility two: If d x− 2  is small, x ≈ 0 5. m and the equation becomes

 0 5
6 67 10 100

9 8
2

11

.
.

.
m

N m kg kg

N

2 2

( ) =
× ⋅( )( )−

r
kkg

m m( ) ( ) − ( )45 0 52 2.   r = × −2 74 10 4. m

 For this answer to apply, the spheres would have to be compressed to a density like that of the 
nucleus of atom. This equilibrium is unstable.

Section 13.2 Free-Fall Acceleration and the Gravitational Force

P13.9 a
MG

RE

=
( )

= =
4

9 80

16 0
0 6132

.

.
.

m s
m s

2
2  toward the Earth.

*P13.10 (a) For the gravitational force on an object in the neighborhood of Miranda we have

m g
Gm m

r

g
Gm

r

obj
obj Miranda

Miranda
2

Miranda

Mir

=

=
aanda

2

2

2

N m kg

kg
=

× ⋅ ×( )
×

−6 67 10 6 68 10

242

11 19. .

110
0 076 1

3 2
m

m s2

( ) = .

FIG. P13.8

continued on next page
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342 Chapter 13 

 (b)  We ignore the difference (of about 4%) in g between the lip and the base of the cliff. 
For the vertical motion of the athlete we have

y y a tf i yi y= + +

− = + + −( )

v
1

2

5 000 0 0
1

2
0 076 1

2

m m s2. tt

t

2

2 1 2
2 5 000

0 076
363=

( )⎛
⎝⎜

⎞
⎠⎟

=
m s

1 m
s

.

 (c) x x t a tf i xi x= + + = + ( )( ) + = ×v
1

2
0 8 5 363 0 3 082 . .m s s 1103 m

  We ignore the curvature of the surface (of about 0.7°) over the athlete’s trajectory.

 (d) v vxf xi= = 8 50. m s

  v vyf yi ya t= + = − ( )( ) = −0 0 076 1 363 27 6. .m s s m s2

  Thus 
�
v i jf = −( ) = +8 50 27 6 8 5 27 62 2. ˆ . ˆ . .m s m s  at tan

.

.
−1 27 6

8 5
 below the x axis.

  
�
v f = 28 9. m s at 72.9 below the horizontal°

P13.11  g
GM

R

G R

R
G R= =

( )
=2

3

2

4 3 4

3

ρ π
π ρ

/

 If
g

g

G R

G R
M

E

M M

E E

= =1

6

4 3

4 3

π ρ
π ρ

/

/

 then

ρ
ρ

M

E

M

E

E

M

g

g

R

R
=

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝

⎞
⎠ ( ) =1

6
4

2

3

Section 13.3 Kepler’s Laws and the Motion of Planets

*P13.12 The particle does possess angular momentum, because it is not headed straight for the origin. 
Its angular momentum is constant because the object is free of outside infl uences.

 Since speed is constant, the distance traveled between t
1
 and t

2
 is equal to the distance traveled 

between t
3
 and t

4
. The area of a triangle is equal to one-half its (base) width across one side times 

its (height) dimension perpendicular to that side. 

 So
1

2

1

22 1 4 3b t t b t tv v−( ) = −( )

 states that the particle’s radius vector sweeps out equal areas in equal times.
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 Universal Gravitation 343

P13.13 Applying Newton’s 2nd Law, F ma∑ =  yields F mag c=  for each 
star:

GMM

r

M

r2 2

2

( ) = v
  or  M

r

G
= 4 2v

 We can write r in terms of the period, T, by considering the time
and distance of one complete cycle. The distance traveled in one 
orbit is the circumference of the stars’ common orbit, so 2πr T= v . 
Therefore

M
r

G G

T= = ⎛
⎝

⎞
⎠

4 4

2

2 2v v v
π

 so,

   M
T

G
= =

×( ) ( )( )2 2 220 10 14 4 86 400

6

3 3 3
v
π π

m s d s d.

..
. .

67 10
1 26 10 63 311

32

× ⋅( ) = × =− N m kg
kg sola2 2 rr masses

P13.14 By Kepler’s Third Law, T ka2 3=   (a = semi-major axis)
 For any object orbiting the Sun, with T in years and a in A.U.,
 k = 1 00. . Therefore, for Comet Halley

75 6 1 00
0 570

2
2

3

. .
.( ) = ( ) +⎛

⎝
⎞
⎠

y

 The farthest distance the comet gets from the Sun is 

 y = ( ) − =2 75 6 0 570 35 22 3. . . A.U.  (out around the orbit of Pluto).

P13.15 T
a

GM
2

2 34= π
 (Kepler’s third law with m M<< )

 M
a

GT
= =

×( )
× ⋅−

4 4 4 22 10

6 67 10

2 3

2

2 8 3

11

π π .

.

m

N m k2 gg s
kg

2( ) ×( )
= ×

1 77 86 400
1 90 102

27

.
.

 (approximately 316 Earth masses)

P13.16 F ma∑ = : 
Gm M

r

m

r
planet star planet

2

2

=
v

 
GM

r
r

GM r r rx x y y

y

star

star

= =

= = =

=

v2 2 2

3 3 3 2 3 2

ω

ω ω ω

ω ωω ωx
x

y
y

r

r

⎛

⎝⎜
⎞

⎠⎟
=

⎛
⎝⎜

⎞
⎠⎟

=
3 2

3 290 0

5 00
3

468.

.

°

yr

°°

5 00. yr

 So planet has turned through 1.30 revolutionY ss .

FIG. P13.13

FIG. P13.14

FIG. P13.16
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P13.17 GM

R d

R d

T
J

J

J

+( )
=

+( )
2

2

2

4π

 GM T R dJ J
2 2 3

11

4

6 67 10 1 90 10

= +( )
× ⋅( ) ×−

π

. .N m kg2 2 227 2 2 7 3
9 84 3 600 4 6 99 10

8 92

kg( ) ×( ) = × +( )
=

. .

.

π d

d ×× =10 89 2007 m km above the planet

P13.18 The gravitational force on a small parcel of material at the star’s equator supplies the necessary 
centripetal acceleration:

GM m

R

m

R
mRs

s s
s2

2
2= =v ω

 so

ω = =
× ⋅( ) ×(−

GM

R
s

s
3

11 306 67 10 2 1 99 10. .N m kg kg2 2 ))⎡⎣ ⎤⎦
×( )10 0 103 3

. m

   
ω = ×1 63 104. rad s

P13.19 The speed of a planet in a circular orbit is given by

 F ma∑ = : GM m

r

m

r
sun
2

2

= v   v =
GM

r
sun

 For Mercury the speed is vM =
×( ) ×( )

×( )
−6 67 10 1 99 10

5 79 10

11 30

10

. .

.

m

s

2

2 == ×4 79 104. m s

 and for Pluto, vP =
×( ) ×( )

×( )
−6 67 10 1 99 10

5 91 10

11 30

12

. .

.

m

s

2

2 == ×4 74 103. m s

 With greater speed, Mercury will eventually move farther from the Sun than Pluto. With original 
distances rP  and rM  perpendicular to their lines of motion, they will be equally far from the Sun 
after time t where

 
r t r t

r r t

t

P P M M

P M M P

2 2 2 2 2 2

2 2 2 2 2

5 9

+ = +

− = −( )

=

v v

v v

. 11 10 5 79 10

4 79 10 4

12 2 10 2

4 2

×( ) − ×( )
×( ) −

m m

m s

.

. ..

.

.
.

74 10

3 49 10

2 27 10
1

3 2

25

9×( ) = ×
×

=
m s

m

m s

2

2 2 224 10 3 938× =s yr.

*P13.20 In T   2 = 4π2a3�GM
central

 we take a = 3.84 × 108 m.

 M
central

 = 4π2a3�GT 2 = 
4 3 84 10

27 3

2 8π ( .

/ )( .

×
× ⋅ ×

m)

(6.67 10 N m kg

3

11 2 2− 886400
6 02 1024

s)
kg2 = ×.

 This is a little larger than 5.98 × 1024 kg. 

 The Earth wobbles a bit as the Moon orbits it, so both objects move nearly in circles 
about their center of mass, staying on opposite sides of it. The radius of the Moon’s orbit 
is therefore a bit less than the Earth–Moon distance.
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Section 13.4 The Gravitational Field

P13.21 
�
g i j i j= + + +(Gm

l

Gm

l

Gm

l2 2 22
45 0 45 0ˆ ˆ cos . ˆ sin . ˆ° ))

 so

 
�
g i j= +⎛

⎝⎜
⎞
⎠⎟ +( )GM

l2 1
1

2 2
ˆ ˆ

 or

 �
g = +⎛

⎝
⎞
⎠

Gm

l2 2
1

2
toward the opposite corner

P13.22 (a) F
GMm

r
= =

× ⋅( ) ×−

2

11 306 67 10 100 1 99 10. .N m kg kg2 2 (( )( )⎡⎣ ⎤⎦
× +( ) = ×

10

1 00 10 50 0
1 31 10

3

4 2

kg

m m. .
. 117 N

 (b) ∆F
GMm

r

GMm

r
= −

front
2

back
2

  ∆ ∆
g

F

m

GM r r

r r
= =

−( )back
2

front
2

front
2

back
2

  
∆g =

×( ) ×( )⎡⎣ ⎤⎦ ×−6 67 10 100 1 99 10 1 01 1011 30 4. . . m(( ) − ×( )⎡
⎣

⎤
⎦

×( ) ×

2 4 2

4 2 4

1 00 10

1 00 10 1 01 10

.

. .

m

m m

N kg

( )
= ×

2

122 62 10∆g .

*P13.23 (a) g g
MG

r a1 2 2 2= =
+

  g gy y1 2= −   g g gy y y= +1 2 = 0

  g g gx x1 2 2= = cosθ  cosθ =
+( )
r

a r2 2 1 2

   
�
g i= −( )2 2g x

ˆ

  or

�
g =

+( )
2
2 2 3 2

MGr

r a
toward the center of mass

 (b)  As r goes to zero, we approach the point halfway between 
the masses. Here the fi elds of the two are equally strong and 
in opposite directions so they add to zero.

 (c) As r → 0, 2MGr(r2 + a2)−3�2 approaches 2MG(0)�a3 = 0

 (d)  Standing far away from the masses, their separateness makes no difference. They produce 
equal fi elds in the same direction to behave like a single object of mass 2 M.

 (e)  As r becomes much larger than a, the expression approaches 2MGr(r2 + 02)−3�2 = 2MGr�r3 = 
2MG�r2 as required.

y

m

O

m

xm

l

l

FIG. P13.21

FIG. P13.22

g2

FIG. P13.23
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Section 13.5 Gravitational Potential Energy

P13.24 (a) U
GM m

r
E= − = −

× ⋅( ) ×(−6 67 10 5 98 1011 24. .N m kg kg2 2 ))( )
+( ) ×

= − ×
100

6 37 2 00 10
4 77 106

9kg

m
J

. .
.

 (b), (c) Planet and satellite exert forces of equal magnitude on each other, directed 

 downward on the satellite and upward on the planet   .

 F
GM m

r
E= =

× ⋅( ) ×( )−

2

11 246 67 10 5 98 10. .N m kg kg2 2 1100
5692

kg

8.37 10 m
N

6

( )
×( ) =

P13.25 (a) ρ
π π

= =
×( )
×( ) =M

r
S

E
4
3

2

30

6 3

3 1 99 10

4 6 37 10
1

.

.

kg

m
..84 109× kg m3

 (b) g
GM

r
S

E

= =
× ⋅( ) ×( )−

2

11 306 67 10 1 99 10. .N m kg kg2 2

66 37 10
3 27 10

6 2
6

.
.

×( ) = ×
m

m s2

 (c) U
GM m

rg
S

E

= − = −
× ⋅( ) ×−6 67 10 1 99 1011 30. .N m kg k2 2 gg kg

m
J

( )( )
×

= − ×
1 00

6 37 10
2 08 106

13.

.
.

P13.26 The height attained is not small compared to the radius of the Earth, so U mgy=  does not apply; 

 U
GM M

r
= − 1 2 does. From launch to apogee at height h,

 K U E K Ui i f f+ + = +∆ mch : 
1

2
0 02M

GM M

R

GM M

R hp i
E p

E

E p

E

v − + = −
+

 
1

2
10 0 10 6 67 10

5 98 13 2 11. .
.×( ) − × ⋅( ) ×−m s N m kg2 2 00

6 67 10

24

11

kg

6.37 10 m

N m kg

6

2 2

×
⎛
⎝⎜

⎞
⎠⎟

= − × ⋅−.(( ) ×
× +

⎛
⎝⎜

⎞
⎠⎟

×

5 98 10

5 00 10

24

7

.

.

kg

6.37 10 m

m

6 h

22 2 2 2
3 2

s m s
m s( ) − ×( ) = − ×

×
6 26 10

3 99 10

6 37
7

14

.
.

. 110

6 37 10
3 99 10

1 26 10

6

6
14

7

m

m
m s3 2

+

× + = ×
×

h

h.
.

. m s
m

m

2 2 = ×

= ×

3 16 10

2 52 10

7

7

.

.h

*P13.27  (a) U U U U U
Gm m

rTot = + + = = −
⎛
⎝⎜

⎞
⎠⎟12 13 23 12

1 2

12

3 3

  
UTot

2 2N m kg kg
= −

× ⋅( ) ×( )− −3 6 67 10 5 00 10

0

11 3 2
. .

..
.

300
1 67 10 14

m
J= − × −

 
(b)  Each particle feels a net force of attraction toward the midpoint between the other two. 

Each moves toward the center of the triangle with the same acceleration. They collide 
simultaneously at the center of the triangle. 

P13.28 W U
Gm m

r
= − = − − −⎛

⎝
⎞
⎠∆ 1 2 0

 W =
+ × ⋅( ) ×( ) ×−6 67 10 7 36 10 1 00 111 22. . .N m kg kg2 2 00

1 74 10
2 82 10

3

6
9kg

m
J

( )
×

= ×
.

.
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P13.29 (a) Energy conservation of the object-Earth system from release to radius r:

  
K U K U

GM m

R h

g h g r

E

E

+( ) = +( )
−

+
=

altitude radius

0
1

22

2
1 1

2

1 2

m
GM m

r

GM
r R h

dr

E

E
E

v

v

−

= −
+

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
= −

ddt

 (b) dt
dr dr

i

f

i

f

f

i

∫ ∫ ∫= − =
v v

. The time of fall is 

  

∆

∆

t GM
r R h

dr

t

E
ER

R h

E

E

= −
+

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟

=

−+

∫ 2
1 1

2

1 2

×× × × × −
×

⎛
⎝

⎞
⎠

⎡
⎣⎢

−6 67 10 5 98 10
1 1

6 87 10
11 24

6. .
.r m

⎤⎤
⎦⎥

−

×

×

∫
1 2

6 37 106

dr
. m

6.87 10 m6

   We can enter this expression directly into a mathematical calculation program. 

  Alternatively, to save typing we can change variables to u
r=

106 . Then 

  
∆t

u
= ×( ) −

×
⎛
⎝

⎞
⎠

−
−

7 977 10
1

10

1

6 87 10
1014 1 2

6 6

1 2
6.

.
ddu

u

6 37

6 87

8
6

6 1 23 541 10
10

10

1 1

6 87

.

.

.
.

∫

= ×
( ) −⎛−

− ⎝⎝
⎞
⎠

−

∫
1 2

6 37

6 87

du
.

.

  A mathematics program returns the value 9.596 for this integral, giving for the time of fall 

  ∆t = × × × = =−3 541 10 10 9 596 339 8 3408 9. . . s

Section 13.6 Energy Considerations in Planetary and Satellite Motion

P13.30 (a) vsolar escape
Sun

Sun

km s= =
⋅

2
42 1

M G

RE

.

 (b) Let r R xE S= ⋅  represent variable distance from the Sun, with x in astronomical units. 

  v = =
⋅

2 42 1M G

R x xE S

Sun .

  If v = 125 000 km

3 600 s
, then x = = ×1 47 2 20 1011. .A.U. m

  (at or beyond the orbit of Mars, 125 000 km � h is suffi cient for escape).

P13.31 1

2

1 1 1

2
2 2m GM m

r r
mi E

f i
fv v+ −

⎛

⎝⎜
⎞

⎠⎟
=  1

2
0

1 1

2
2 2v vi E

E
fGM

R
+ −

⎛
⎝⎜

⎞
⎠⎟

=

 or

  v vf
E

E

GM

R
2

1
2 2= −

 and

  v vf
E

E

GM

R
= −

⎛
⎝⎜

⎞
⎠⎟1

2

1 2
2

  
v f = ×( ) − ×⎡

⎣
⎤
⎦ = ×2 00 10 1 25 10 1 66 104 2 8

1 2
4. . . m s
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*P13.32 E
GMm

rtot = −
2

 

∆E
GMm

r ri f

= −
⎛

⎝⎜
⎞

⎠⎟
=

×( ) ×(−

2

1 1 6 67 10 5 98 1011 24. . ))
+

−
+

⎛
⎝⎜

⎞
⎠⎟

=

2

10 1

6 370 100

1

6 370 200

4

3 kg

10 m3

∆E ..69 10 4698× =J MJ

 Both in the original orbit and in the fi nal orbit, the total energy is negative, with an absolute 
value equal to the positive kinetic energy. The potential energy is negative and twice as large 
as the total energy. As the satellite is lifted from the lower to the higher orbit, the gravitational 
energy increases, the kinetic energy decreases, and the total energy increases. The value of 
each becomes closer to zero. Numerically, the gravitational energy increases by 938 MJ, the 
kinetic energy decreases by 469 MJ, and the total energy increases by 469 MJ.

P13.33 To obtain the orbital velocity, we use F
mMG

R

m

R∑ = =2

2v

 or v = MG

R

 We can obtain the escape velocity from 
1

2
m

mMG

R
vesc

2 =

 or v vesc = =2
2

MG

R

*P13.34 Gravitational screening does not exist. The presence of the satellite has no effect on 
the force the planet exerts on the rocket. 

 The rocket is in a potential well at Ganymede’s surface with energy

U
Gm m

r

m
1

1 2

11
2

236 67 10 1 495 10
= − = −

× ⋅ ×(−. .N m kg2 ))
×( )

= − ×

kg m

m s

2

2 2

2 64 10

3 78 10

6

1
6

2

.

.U m

 The potential well from Jupiter at the distance of Ganymede is

U
Gm m

r

m
2

1 2

11
2

276 67 10 1 90 10
= − = −

× ⋅ ×( )−. .N m kg2

kkg m

m s

2

2 2

1 071 10

1 18 10

9

2
8

2

.

.

×( )
= − ×U m

 To escape from both requires

1

2
3 78 10 1 18 10

2

2
2 6 8

2m mv

v

esc
2 2

esc

m s= + × + ×( )
=

. .

×× × =1 22 10 15 68. .m s km s2 2
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P13.35 F Fc G=  gives m

r

GmM

r
Ev2

2=

 which reduces to v = GM

r
E

 and period = =2
2

π πr
r

r

GM Ev

 (a) r RE= + = + =200 6 370 200 6 570km km km km

  Thus,
 

period m
m

= ×( ) ×( )
× −2 6 57 10

6 57 10

6 67 10
6

6

11π .
.

. N m kg kg

s

2 2⋅( ) ×( )
= × =

5 98 10

5 30 10 88 3

24

3

.

. .T mmin h= 1 47.

 (b) v = =
× ⋅( ) ×( )−

GM

r
E

6 67 10 5 98 10

6

11 24. .

.

N m kg kg2 2

557 10
7 796×( ) =

m
km s.

 (c) K U K Uf f i i+ = + + energy input, gives

 input = − + −⎛

⎝⎜
⎞

⎠⎟
− −⎛

⎝⎜
⎞
⎠⎟

1

2

1

2
2 2m m

GM m

r

GM m

rf i
E

f

E

i

v v  (1)

r R

R
i E

i
E

= = ×

= = ×

6 37 10

2

86 400
4 63 10

6

2

.

.

m

s
m sv

π

  Substituting the appropriate values into (1) yields the 

minimum energy input = ×6 43 109. J

P13.36 The gravitational force supplies the needed centripetal acceleration. 

 Thus,
GM m

R h

m

R h
E

E E+( )
=

+( )2

2v   or  v2 =
+

GM

R h
E

E

 (a)   T
r R hE

GM
R h

E

E

= =
+( )

+( )

2 2π π
v

 T
R h

GM
E

E

=
+( )

2
3

π

 (b)   v =
+

GM

R h
E

E

continued on next page
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 (c) Minimum energy input is  ∆E K U K Uf gf i gimin = +( ) − −( )
  It is simplest to launch the satellite from a location on the equator, and launch it

 toward the east.

  This choice has the object starting with energy  K mi i= 1

2
2v

  with

vi
E ER R= =2

1 00

2

86 400

π π
. day s

  and   U
GM m

Rgi
E

E

= −

  Thus,

∆E m
GM

R h

GM m

R h
m

RE

E

E

E

E
min =

+
⎛
⎝⎜

⎞
⎠⎟

−
+

−1

2

1

2

4

86

2 2π
4400

2
s( )

⎡

⎣
⎢

⎤

⎦
⎥ + GM m

R
E

E

  or

∆E GM m
R h

R R h

R m
E

E

E E

E
min = +

+( )
⎡

⎣
⎢

⎤

⎦
⎥ −2

2

2

86 400

2 2π
s( )2

P13.37 (a) Energy conservation for the object-Earth system from fi ring to apex:

K U K U

m
GmM

R

GmM

R h

g i g f

i
E

E

E

E

+( ) = +( )
− = −

+
1

2
02v

  where 
1

2
m

GmM

R
E

E

vesc
2 = . Then

1

2

1

2

1

2
2

2

v v v

v v
v
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i

R

R h
− = −

+

− =

esc
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2

esc
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2 RR

R h

R h

R

h
R

E

E

i

E

E

E

+

−
= +

=

1
2v v v

v
v

esc
2

esc
2

esc
2

esc
2 −−

− =
− +

−

=

v
v v v

v vi
E

E E i E

i

E

R
R R R

h
R

2

2

2
esc
2

esc
2

esc
2

vv
v v

i

i

2

2
esc
2 −

 (b) h = × ( )
( ) − ( ) = ×6 37 10

11 2 8 76
1 00 10

6 2

2 2

.

. .
.

m 8.76 77 m

 (c)  The fall of the meteorite is the time-reversal of the upward fl ight of the projectile, so it is 
described by the same energy equation

 v v vi
E

E E

R

R h

h

R h
2 2 21 11= −

+
⎛
⎝⎜

⎞
⎠⎟

=
+

⎛
⎝⎜

⎞
⎠⎟

=esc esc ..
.

. .
2 10

2 51 10

6 37 10 2 51 10
3 2

7

6 7×( ) ×
× + ×

m s
m

m mm

m s

m s

2 2

⎛
⎝⎜

⎞
⎠⎟

= ×

= ×

1 00 10

1 00 10

8

4

.

.vi

 (d) With v vi << esc, h
R R R

GM
E i E i E

E

≈ =v
v

v2

2

2

2esc

. But g
GM

R
E

E

= 2
, so h

g
i= v2

2
, in agreement with

  0 2 02 2= + −( ) −( )vi g h
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P13.38 (a) For the satellite F ma∑ =   GmM

r

m

r
E

2
0
2

=
v

  v0

1 2

= ⎛
⎝

⎞
⎠

GM

r
E

 (b) Conservation of momentum in the forward direction for the exploding satellite:

m m

m m m

GM

r

i f

i

i
E

v v

v v

v v

∑ ∑( ) = ( )
= +

= = ⎛
⎝

⎞
⎠

5 4 0

5

4

5

4

0

0

11 2

 (c)  With velocity perpendicular to radius, the orbiting fragment is at perigee. Its apogee 
distance and speed are related to r and vi by 4 4mr mri f fv v=  and 

  
1

2
4

4 1

2
4

42 2m
GM m

r
m

GM m

ri
E

f
E

f

v v− = − . Substituting v
v

f
i

f

r

r
= we have 

  1

2

1

2
2

2 2

2v
v

i
E i

f

E

f

GM

r

r

r

GM

r
− = − . Further, substituting vi

EGM

r
2 25

16
=  gives

 

25

32

25
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7
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25

32

2

GM

r

GM

r

GM r

r

GM

r

r

r

r

E E E

f

E

f

− = −

− =
ff fr2

1−

  Clearing of fractions, − = −7 25 322 2r r rrf f  or 7 32 25 0
2r

r

r

r
f f⎛

⎝⎜
⎞
⎠⎟

− ⎛
⎝⎜

⎞
⎠⎟

+ =  giving 

 r

r
f =

+ ± − ( )( )
=

32 32 4 7 25

14

50

14

2

 or 14

14
. The latter root describes the starting point. The 

 outer end of the orbit has 
r

r
f = 25

7
; r

r
f = 25

7

P13.39 (a) The major axis of the orbit is  2 50 5a = . AU  so  a = 25 25. AU
 Further, in the textbook’s diagram of an ellipse, a c+ = 50 AU so c = 24 75. AU 

  Then

e
c

a
= = =24 75

25 25
0 980

.

.
.

 (b) In T K as
2 3=  for objects in solar orbit, the Earth gives us

  1 1
2 3yr AU( ) = ( )Ks   Ks =

( )
( )

1

1

2

3

yr

AU

  Then

T 2
2

3
31

1
25 25=

( )
( ) ( )yr

AU
AU.   T = 127 yr

 (c) U
GMm

r
= − = −

× ⋅( ) ×(−6 67 10 1 991 1011 30. .N m kg kg2 2 )) ×( )
×( ) = − ×

1 2 10

50 1 496 10
2 13 10

10
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17.

.
.

kg

m
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Additional Problems

*P13.40 (a)  Let R represent the radius of the asteroid. Then its volume is 
4

3
3π R  and its mass is ρ π4

3
3R .

For your orbital motion, F ma∑ = ,  Gm m

R

m

R
1 2
2

2
2

= v ,  G R

R R

ρ π4

3

3

2

2

= v

 R
G

=
⎛
⎝⎜

⎞
⎠⎟

=
( )

× −

3

4

3 8 5

6 67 10

2 1 2 2v
ρ π

.

.

m s kg m2 3

111

1 2

4

1100 4
1 53 10

N m kg
m2⋅ ( )

⎛

⎝⎜
⎞

⎠⎟
= ×

π
.

 (b) ρ π π4

3
1100

4

3
1 53 10 1 66 103 4 3 1R = ( ) ×( ) = ×kg m m3 . . 66 kg

 (c) v = 2π R

T
  T

R= =
×( )

= × =2 2 1 53 10

8 5
1 13 10 3 15

4
4π π

v

.

.
. .

m

m s
s h

 (d)  For an illustrative model, we take your mass as 90 kg and assume the asteroid is originally 
at rest. Angular momentum is conserved for the asteroid-you system:

  

L L

m R I

m R m R
T

m

i f∑ ∑=

= −

= −

0

0
2

5

2
2

2 1
2

2

v

v

v

ω
π

asteroid

==

= =

4

5

4

5

4 1 66

1

1

2

π

π π

m R

T

T
m R

m

asteroid

asteroid v

. ××( ) ×( )
( )( ) =

10 1 53 10

5 90 8 5
8 3

16 4kg m

kg m s

.

.
. 77 10 26 517× =s billion years.

  

Thus your running does not produce signifi cant rotation of the asteroid if it is originally 
stationary, and does not signifi cantly affect any rotation it does have.

   This problem is realistic. Many asteroids, such as Ida and Eros, are roughly 30 km in 
diameter. They are typically irregular in shape and not spherical. Satellites such as Phobos 
(of Mars), Adrastea (of Jupiter), Calypso (of Saturn), and Ophelia (of Uranus) would allow 
a visitor the same experience of easy orbital motion. So would many Kuiper-belt objects.
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P13.41 Let m represent the mass of the spacecraft, rE  the radius of the Earth’s orbit, and x the distance 
from Earth to the spacecraft. 

 The Sun exerts on the spacecraft a radial inward force of  F
GM m

r x
s

s

E

=
−( )2

 while the Earth exerts on it a radial outward force of   F
GM m

xE
E= 2

 The net force on the spacecraft must produce the correct centripetal acceleration for it to have an 
orbital period of 1.000 year. 

 Thus,

F F
GM m

r x

GM m

x

m

r x

m

r xS E
S

E

E

E E

− =
−( )

− =
−( ) =

−( )2 2

2 2v ππ r x

T
E −( )⎡

⎣
⎢

⎤

⎦
⎥

2

 which reduces to

   GM

r x

GM

x

r x

T
S

E

E E

−( )
− =

−( )
2 2

2

2

4π  (1)

 Cleared of fractions, this equation would contain powers of x ranging from the fi fth to the zeroth. We do 
not solve it algebraically. We may test the assertion that x is between 1 47 109. × m and 1 48 109. × m 
by substituting both of these as trial solutions, along with the following data: M S = ×1 991 1030. kg, 
M E = ×5 983 1024. kg, rE = ×1 496 1011. m, and T = = ×1 000 3 156 107. .yr s.

 With x = ×1 47 109. m  substituted into equation (1), we obtain

6 052 10 1 85 10 5 871 103 3 3. . .× − × ≈ ×− − −m s m s m s2 2 2

 or

5 868 10 5 871 103 3. .× ≈ ×− −m s m s2 2

 With x = ×1 48 109. m substituted into the same equation, the result is

  6 053 10 1 82 10 5 870 8 103 3 3. . .× − × ≈ ×− − −m s m s m s2 2 22

 or

5 870 9 10 5 870 8 103 3. .× ≈ ×− −m s m s2 2

 Since the fi rst trial solution makes the left-hand side of equation (1) slightly less than the right 
hand side, and the second trial solution does the opposite, the true solution is determined as 
between the trial values. To three-digit precision, it is 1 48 109. × m.

 As an equation of fi fth degree, equation (1) has fi ve roots. The Sun-Earth system has fi ve 
Lagrange points, all revolving around the Sun synchronously with the Earth. The SOHO and 
ACE satellites are at one. Another is beyond the far side of the Sun. Another is beyond the night 
side of the Earth. Two more are on the Earth’s orbit, ahead of the planet and behind it by 60°. 
Plans are under way to gain perspective on the Sun by placing a spacecraft at one of these two 
co-orbital Lagrange points. The Greek and Trojan asteroids are at the co-orbital Lagrange points 
of the Jupiter-Sun system.
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P13.42 The acceleration of an object at the center of the Earth due 
to the gravitational force of the Moon is given by 

 a G
M

d
= Moon

2

 At the point A nearest the Moon, a G
M

d r
M

+ =
−( )2

 At the point B farthest from the Moon, a G
M

d r
M

− =
+( )2

 ∆a a a GM
d r dM= − =

−( ) −
⎡

⎣
⎢

⎤

⎦
⎥+

1 1
2 2

 For d r>> , ∆a
GM r

d
M= = × −2

1 11 103
6. m s2

 Across the planet, 
∆ ∆g

g

a

g
= = × = ×

−
−2 2 22 10

9 80
2 26 10

6
7.

.
.

m s

m s

2

2

P13.43 Energy conservation for the two-sphere system from release to contact:

− = − + +
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Gmm
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r R
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⎦⎥

⎛
⎝⎜

⎞
⎠⎟

 (a) The injected impulse is the fi nal momentum of each sphere,

  m m Gm
r R
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r R

v = −⎡
⎣⎢

⎤
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⎝

⎞
⎠

⎡2 2
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⎣⎣⎢
⎤
⎦⎥
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 (b) If they now collide elastically each sphere reverses its velocity to receive impulse

  m m m Gm
r R

v v v− −( ) = = −⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

2 2
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2
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1 2

P13.44 Momentum is conserved:
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FIG. P13.42
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P13.45 (a)  Each bit of mass dm in the ring is at the same distance from the object at A. The separate 

  contributions − Gmdm

r
 to the system energy add up to −

GmM

r
ring . When the object is at A,

  this is

  
− × ⋅ ×

×

−6 67 10 1 000

1 10

11. N m kg 2.36 10 kg

kg

2 20

2 88 2 8 2

4

2 10
7 04 10

m m
J

( ) + ×( )
= − ×.

 (b) When the object is at the center of the ring, the potential energy is 

  − × ⋅ ×
×

−6 67 10

1

11. N m 1 000 kg 2.36 10 kg

kg

2 20

2 110
1 57 108

5

m
J= − ×.

 (c) Total energy of the object-ring system is conserved:

  

K U K Ug A g B

B

+( ) = +( )
− × = −0 7 04 10

1

2
1 000 14 2. .J kgv 557 10

2 8 70 10
13

5

4 1 2

×

= × ×⎛
⎝⎜

⎞
⎠⎟

=

J

J

1 000 kg
vB

.
..2 m s

P13.46 (a)  The free-fall acceleration produced by the Earth is g
GM

r
GM rE

E= = −
2

2 (directed
downward)

  Its rate of change is

dg

dr
GM r GM rE E= −( ) = −− −2 23 3

  The minus sign indicates that g decreases with increasing height.

  At the Earth’s surface, 

   
dg

dr

GM

R
E

E

= − 2
3

 (b) For small differences, 

   
∆
∆

∆g

r

g

h

GM

R
E

E

= = 2
3

  Thus,

   ∆g
GM h

R
E

E

= 2
3

 (c) ∆g =
× ⋅( ) ×( )−2 6 67 10 5 98 10 6 0011 2 24. . .N m kg kg2 mm

m
m s2( )

×( ) = × −

6 37 10
1 85 10

6 3
5

.
.

P13.47 From the walk, 2 25 000πr = m. Thus, the radius of the planet is r = = ×25 000
3 98 103m

2
m

π
.

 From the drop: ∆y gt g= = ( ) =1

2

1

2
29 2 1 402 2. .s m

 so,

g
MG

r
= ( )

( ) = × =−2 1 40

29 2
3 28 102

3
2

.

.
.

m

s
m s2   ∴ = ×M 7 79 1014. kg
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P13.48 The distance between the orbiting stars is d r r= =2 30 3cos ° since

 cos30
3

2
° = . The net inward force on one orbiting star is

  
Gmm
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P13.49 For a 6.00 km diameter cylinder, r = 3 000 m and to simulate1 9 80g = . m s2

   g
r

r

g

r

= =

= =

v2
2

0 057 2

ω

ω . rad s

 The required rotation rate of the cylinder is 1 rev

110 s

 (For a description of proposed cities in space, see Gerard K. O’Neill in Physics Today,
Sept. 1974.)

P13.50 For both circular orbits, 

 F ma∑ = : 
GM m

r

m

r
E

2

2

= v

  v = GM

r
E

 (a) The original speed is vi =
× ⋅( ) ×( )

×

−6 67 10 5 98 10

6 37 1

11 24. .

.

N m kg kg2 2

00 2 10
7 79 106 5

3

m m
m s

+ ×( ) = ×.

 (b) The fi nal speed is vi =
× ⋅( ) ×( )

×

−6 67 10 5 98 10

6 47 1

11 24. .

.

N m kg kg2 2

00
7 85 106

3

m
m s( ) = ×.

  The energy of the satellite-Earth system is

 K U m
GM m

r
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GM

r
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r
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E E E E+ = − = − = −1
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2 2
2v

 (c) Originally Ei = −
× ⋅( ) ×( )−6 67 10 5 98 10 10011 24. .N m kg kg k2 2 gg
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FIG. P13.50
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continued on next page
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 (d) Finally E f = −
× ⋅( ) ×( )−6 67 10 5 98 10 10011 24. .N m kg kg k2 2 gg

m
J

( )
×( ) = − ×

2 6 47 10
3 08 106

9

.
.

 (e)  Thus the object speeds up as it spirals down to the planet. The loss of gravitational energy 
is so large that the total energy decreases by

  E Ei f− = − × − − ×( ) = ×3 04 10 3 08 10 4 69 109 9 7. . .J J J

 (f   )  The only forces on the object are the backward force of air resistance R, comparatively very 
small in magnitude, and the force of gravity. Because the spiral path of the satellite is not

  perpendicular to the gravitational force, one component of the gravitational force

 pulls forward on the satellite  to do positive work and make its speed increase.

P13.51 (a)  At infi nite separation U = 0 and at rest K = 0. Since energy of the two-planet system is 
conserved we have,

  0
1

2

1

21 1
2

2 2
2 1 2= + −m m

Gm m

d
v v  (1)

  The initial momentum of the system is zero and momentum is conserved.

  Therefore, 

   0 1 1 2 2= −m mv v  (2)

  Combine equations (1) and (2):

v1 2
1 2

2=
+( )m
G

d m m
  and  v2 1

1 2

2=
+( )m
G

d m m

  Relative velocity

v v vr

G m m

d
= − −( ) =

+( )
1 2

1 22

 (b) Substitute given numerical values into the equation found for v
1
 and v

2
 in part (a) to fi nd

v1
41 03 10= ×. m s   and  v2

32 58 10= ×. m s

  Therefore,

   K m1 1 1
2 321

2
1 07 10= = ×v . J   and  K m2 2 2

2 311

2
2 67 10= = ×v . J

P13.52 (a)  The net torque exerted on the Earth is zero. Therefore, the angular momentum of the Earth 
is conserved;

  mr mra a p pv v=  and v va p
p

a

r

r
=

⎛
⎝⎜

⎞
⎠⎟

= ×( )⎛
⎝

⎞3 027 10
1 471

1 521
4.

.

.
m s ⎠⎠ = ×2 93 104. m s

 (b) K mp p= = ×( ) ×( ) = ×1

2

1

2
5 98 10 3 027 10 2 74 102 24 4 2

v . . . 333 J

  U
GmM

rp
p

= − = −
×( ) ×( ) ×−6 673 10 5 98 10 1 99 1011 24 3. . . 00

11
33

1 471 10
5 40 10

( )
×

= − ×
.

. J

 (c) Using the same form as in part (b), Ka = ×2 57 1033. J  and Ua = − ×5 22 1033. J .

  Compare to f ind that K Up p+ = − ×2 66 1033. J  and K Ua a+ = − ×2 65 1033. J .

  They agree.
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P13.53 (a) T
r= =

× ×( )
×

= ×2 2 30 000 9 46 10

2 50 10
7 1

15

5

π π
v

.

.

m

m s
00 2 1015 8s yr= ×

 (b) M
a

GT
= =

× ×( )
× −

4 4 30 000 9 46 10

6 67 10

2 3

2

2 15 3

1

π π .

.

m
11 15 2

41

7 13 10
2 66 10

N m kg s
kg

2 2⋅( ) ×( ) = ×
.

.

  M = ×1 34 10 1011 11. ~solar masses solar masses

  The number of stars is on the order of 1011  .

P13.54 Centripetal acceleration comes from gravitational acceleration.
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P13.55 Let m represent the mass of the meteoroid and v
i 
its speed when far away. No 

torque acts on the meteoroid, so its angular momentum is conserved as it moves 
between the distant point and the point where it grazes the Earth, moving perpen-
dicular to the radius:

 L Li f= : m mi i f f

� � � �
r v r v× = ×

  
m R mRE i E f
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3

v v

v v

( ) =

=

 Now energy of the meteoroid-Earth system is also conserved:
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P13.56 (a) From the data about perigee, the energy of the satellite-Earth system is
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continued on next page
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 (c)  Since both the energy of the satellite-Earth system and the angular momentum of the Earth 
are conserved, 

  at apogee we must have  
1

2
2m

GMm

r
Ea

a

v − =

  and  m r La av sin .90 0° =

  Thus, 1

2
1 60

6 67 10 5 98 10 1 602
11 24

.
. . .

( ) −
×( ) ×( )( )−

va
ar

== − ×3 67 107. J

  and 1 60 9 24 1010. .kg kg m s2( ) = × ⋅va ar

  Solving simultaneously,  
1

2
1 60

6 67 10 5 98 10 1 60 12
11 24

.
. . . .

( ) −
×( ) ×( )( )−

va

660

9 24 10

3 67 10

10

7

( )
×

= − ×

va

.

.

 which reduces to 0 800 11 046 3 672 3 10 02 7. .v va a− + × =

  so va =
± ( ) − ( ) ×( )11 046 11 046 4 0 800 3 672 3 10

2 0 80

2 7. .

. 00( )

  This gives va = 8 230 m s or 5 580 m s . The smaller answer refers to the velocity at the 

  apogee while the larger refers to perigee.

  Thus,

r
L

ma
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= = × ⋅
( ) ×v

9 24 10

1 60 5 58 10

10

3

.

. .

kg m s

kg m

2

ss
m( ) = ×1 04 107.

 (d) The major axis is 2a r rp a= + , so the semi-major axis is

 a = × + ×( ) = ×1

2
7 02 10 1 04 10 8 69 106 7 6. . .m m m

 (e) T
a

GM E

= =
×( )

× ⋅−

4 4 8 69 10

6 67 10

2 3 2 6 3

11

π π .

.

m

N m k2 gg kg2( ) ×( )5 98 1024.

  T = =8 060 134s min

P13.57 If we choose the coordinate of the center of mass at the origin, then

0 2 1=
−( )
+

Mr mr

M m
  and  Mr mr2 1=

 (Note: this is equivalent to saying that the net torque must be zero and 
the two experience no angular acceleration.) For each mass F ma=  so 

 mr
MGm

d1 1
2

2ω =   and  Mr
MGm

d2 2
2

2ω =

 Combining these two equations and using d r r= +1 2 gives r r
M m G

d1 2
2

2+( ) = +( )ω
 with

   ω ω ω1 2= =

 and

   T = 2π
ω

 we fi nd

   T
d

G M m
2

2 34=
+( )

π

FIG. P13.57
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P13.58 From Kepler’s third law, minimum period means minimum orbit size. The “treetop satellite” in 
Problem 33 has minimum period. The radius of the satellite’s circular orbit is essentially equal to 
the radius R of the planet.

 F ma∑ = : GMm

R

m

R

m

R

R

T2

2 22= = ⎛
⎝

⎞
⎠

v π

 G V
R R

RT

G R
R

T

ρ
π

ρ π π

=
( )

⎛
⎝

⎞
⎠ =

2 2 2

2

3
2 3

2

4

4

3

4

 The radius divides out: T G2 3ρ π=   T
G

= 3π
ρ

*P13.59 The gravitational forces the particles exert on each other are in the x direction. They do not affect 
the velocity of the center of mass. Energy is conserved for the pair of particles in a  reference 
frame coasting along with their center of mass, and momentum conservation means that the 
 identical particles move toward each other with equal speeds in this frame:

 U
gi
 + K

i
 + K

i
 = U

gf
 + K

f
 + K

f

 − + = − + +

− × −

Gm m

r

Gm m

r
m m

i f

1 2 1 2 1
2 1

2 1
2 2

20

6 67 10

v v

( . 111 111000

20

6 67 10N m kg kg)

m

N2 2 2⋅ = − × ⋅−/ )( ( . mm kg kg)

m
kg)

2 2 2/ )(
(

.

1000

2
2 1000

3 00

1
2

2+ ( )

×

v

110

1000
1 73 10

5 1 2

4
−

−⎛
⎝⎜

⎞
⎠⎟

= = ×J

kg
m/s

/

.v

 Then their vector velocities are (800 + 1.73 × 10−4) î  m�s and (800 − 1.73 × 10−4) î  m�s

 for the trailing particle and the leading particle, respectively.

*P13.60 (a) The gravitational force exerted on m by the Earth (mass ME) accelerates m according to 

  mg
GmM

r
E

2 2= . The equal magnitude force exerted on the Earth by m produces 

   acceleration of the Earth given by g
Gm

r1 2= . The acceleration of relative approach is then

  
g g

Gm

r

GM

r
E

2 1 2 2

116 67 10 5 98 1
+ = + =

× ⋅( ) ×−. .N m kg2 2 00

1 20 10

2 77 1
5

24

7 2

kg +

m

m/s2

m

m

( )
×( )

= ( ) +

.

.
.998 1024×

⎛
⎝⎜

⎞
⎠⎟kg

 (b) and (c) Here m = 5 kg and m = 2000 kg are both negligible compared to the mass of the Earth,
    so the acceleration of relative approach is just 2.77 m�s2 .

continued on next page
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 (d)  Again, m accelerates toward the center of mass with g2 2 77= . m s2. Now the Earth 
accelerates toward m with an acceleration given as 

M g
GM m

r

g
Gm

r

E
E

1 2

1 2

116 67 10 2 00

=

= =
× ⋅( )−. .N m kg2 2 ××( )

×( ) =
10

1 20 10
0 926

24

7 2

kg

m
m s2

.
.

  The distance between the masses closes with relative acceleration of

g g grel
2 2 2m s m s m s= + = + =1 2 0 926 2 77 3 70. . .

 (e)  Any object with mass small compared to the Earth starts to fall with acceleration 2.77 m�s2.
As m increases to become comparable to the mass of the Earth, the acceleration increases, 
and can become arbitrarily large. It approaches a direct proportionality to m.

P13.61 For the Earth,  F ma∑ = :  
GM m

r

m

r

m

r

r

T
s

2

2 22= = ⎛
⎝

⎞
⎠

v π

 Then GM T rs
2 2 34= π

 Also the angular momentum L m r m
r

T
r= =v

2π
 is a constant for the Earth.

 We eliminate  r
LT

m
=

2π
 between the equations:
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= ⎛
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 Now the rates of change with time t are described by
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⎞
⎠ + ⎛

⎝
⎞
⎠ =   

dT
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T
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s
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= −
⎛
⎝⎜

⎞
⎠⎟

≈2
∆
∆

 
∆ ∆T t

dM

dt

T

M
s

s

≈ −
⎛
⎝⎜

⎞
⎠⎟

= − ×
2 5 000

3 16 107

yr
s

1 y

.

rr
kg s

yr

1.991 10 kg30

⎛
⎝⎜

⎞
⎠⎟

− ×( )
×

⎛
⎝

3 64 10 2
19. ⎜⎜

⎞
⎠⎟

= × −∆T 1 82 10 2. s

ANSWERS TO EVEN PROBLEMS

P13.2 2 67 10 7. × − m s2

P13.4 3.00 kg and 2.00 kg

P13.6 (a) 4 39 1020. × N toward the Sun (b) 1 99 1020. × N toward the Earth (c) 3 55 1022. × N toward 
the Sun (d) Note that the force exerted by the Sun on the Moon is much stronger than the force 
of the Earth on the Moon. In a sense, the Moon orbits the Sun more than it orbits the Earth. The 
Moon’s path is everywhere concave toward the Sun. Only by subtracting out the solar orbital 
motion of the Earth-Moon system do we see the Moon orbiting the center of mass of this system.

P13.8 There are two possibilities: either 1 61 3m nm− .  or 2 74 10 4. × − m
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P13.10 (a) 7.61 cm�s2 (b) 363 s (c) 3.08 km (d) 28.9 m�s at 72.9° below the horizontal

P13.12 The particle does possess angular momentum, because it is not headed straight for the origin. Its 
angular momentum is constant because the object is free of outside infl uences. See the solution.

P13.14 35.2 AU

P13.16 Planet Y has turned through 1.30 revolutions.

P13.18 1 63 104. × rad s

P13.20 6.02 × 1024 kg. The Earth wobbles a bit as the Moon orbits it, so both objects move nearly in 
circles about their center of mass, staying on opposite sides of it. The radius of the Moon’s orbit 
is therefore a bit less than the Earth–Moon distance. 

P13.22 (a) 1 31 1017. × N toward the center (b) 2 62 1012. × N kg

P13.24 (a) − ×4 77 109. J (b) 569 N down (c) 569 N up

P13.26 2 52 107. × m

P13.28 2 82 109. × J

P13.30 (a) 42 1. km s (b) 2 20 1011. × m

P13.32 469 MJ. Both in the original orbit and in the fi nal orbit, the total energy is negative, with an abso-
lute value equal to the positive kinetic energy. The potential energy is negative and twice as large 
as the total energy.  As the satellite is lifted from the lower to the higher orbit, the gravitational 
energy increases, the kinetic energy decreases, and the total energy increases. The value of each 
becomes closer to zero. Numerically, the gravitational energy increases by 938 MJ, the kinetic 
energy decreases by 469 MJ, and the total energy increases by 469 MJ.

P13.34 Gravitational screening does not exist. The presence of the satellite has no effect on the force the 
planet exerts on the rocket. 15.6 km�s 

P13.36 (a) 2
3 2 1 2π R h GME E+( ) ( )−

 (b) GM R hE E( ) +( )−1 2 1 2
 (c) GM m

R h

R R h

R m
E

E

E E

E+
+( )

⎡

⎣
⎢

⎤

⎦
⎥ −
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2

2

2

86 400

2 2

2

π
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 The satellite should be launched from the Earth’s equator toward the east.

P13.38 (a) v0

1 2

= ⎛
⎝

⎞
⎠

GM

r
E  (b) vi

EGM r
=

( )5

4

1 2

 (c) r
r

f = 25

7

P13.40 (a) 15.3 km (b) 1.66 × 1016 kg (c) 1.13 × 104 s (d) No. Its mass is so large compared with 
mine that I would have negligible effect on its rotation.

P13.42 2 26 10 7. × −

P13.44 2

3

GM

R
; 1

3

GM

R

P13.46 (a), (b) see the solution (c) 1 85 10 5. × − m s2

P13.48 see the solution

P13.50 (a) 7 79. km s (b) 7 85. km s (c) −3 04. GJ (d) −3 08. GJ (e) loss MJ= 46 9.  
(f) A component of the Earth’s gravity pulls forward on the satellite in its downward banking 
trajectory.

ISMV1_5103_13.indd   362ISMV1_5103_13.indd   362 12/5/06   12:09:48 PM12/5/06   12:09:48 PM



 Universal Gravitation 363

P13.52 (a) 29 3. km s (b) K p = ×2 74 1033. J; U p = − ×5 40 1033. J 

 (c) Ka = ×2 57 1033. J; Ua = − ×5 22 1033. J; yes

P13.54 119 km

P13.56 (a) −36 7. MJ (b) 9 24 1010. × ⋅kg m s2  (c) 5 58. km s; 10.4 Mm (d) 8.69 Mm (e) 134 min

P13.58 see the solution

P13.60 (a) (2.77 m�s2)(1 + m�5.98 × 1024 kg) (b) 2.77 m�s2 (c) 2.77 m�s2 (d) 3.70 m�s2 
(e) Any object with mass small compared with the mass of the Earth starts to fall with accelera-
tion 2.77 m�s2. As m increases to become comparable to the mass of the Earth, the acceleration 
increases and can become arbitrarily large. It approaches a direct proportionality to m.
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